MECHANISM IDENTIFICATION IN LITHIUM-OXYGEN BATTERIES BY IMPEDANCE SPECTROSCOPY

<u>Nuria Vicente^a</u>, Marta Haro, Germà Garcia-Belmonte^a ^a Institute of Advanced Materials (INAM), Universitat Jaume I, ES-12006 Castelló, Spain.

email address of the presenting author: vicenten@uji.es

Li-O₂ batteries are claimed to be one of the future energy storage technologies because of their high energy density in comparison to any other type of batteries. Here Li^+ ions and O_2 directly react with each other. To produce a practical Li-O₂ battery with energy density around its theoretical value, the thermodynamic and kinetic mechanisms, which govern and limit their functioning, must be deeply understood.¹ In this study, Li-O₂ discharge process in different cathodes has been monitored by electrochemical impedance spectroscopy (EIS)^{2, 3}, in the presence and absence of O_2 . When impedance spectra are recording from 4.0 to 2.7 V vs Li/Li^+ , show the same behavior with and without O₂: it is observed an extended electrochemical double layer capacitance (EDLC) made up of adsorbed Li⁺, which depends on the carbon matrix surface area. As soon as oxygen reduction reaction (ORR) voltages (~2.6 V) are tested in presence of O_2 , the electrode shows a low-frequency capacitance increment accompanied of EDLC reduction. This functioning evidences that exists a competition between Li⁺ surface adsorption and its consumption when ORR starts. Three steps with their characteristic reaction time and resistance in the Li-O₂ discharge could be identified: (i) interfacial phenomena, (ii) EDLC, and (iii) chemical capacitance generated by ORR. Noticeably EDLC remains unaltered after cycling. This fact suggests that the ORR products (Li₂O₂ and Li₂CO₃) are not covering the internal electrode surface, but deposited on electrode-O₂ interface, hindering thereby the subsequent reaction.

In conclusion, an equivalent circuit model is proposed to study the Li-O₂ batteries (figure 1.a), which affords to monitor adsorbed Li^+ consumption and reveal the evidence of Li^+ desorption from the C surface when the ORR starts.⁴

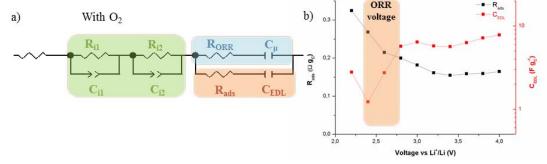


Figure 1. a) Equivalent circuit model for the system in presence of O₂: Green, interfacial phenomena; orange, EDLC; and blue, chemical capacitance ORR. b) Parameters determined during discharge process by the EIS fitting with the equivalent circuit model: resistance adsorbed Li⁺, R_{ads}, and capacitance, C_{EDL}, associated to the formation of the EDL.

Reference to a journal publication:

[1] N. Imanishi, A. C. Luntz, P. Bruce The Lithium Air Battery: Fundamentals Springer (2013)J.

[2] Højberg, B. D. McCloskey, J. Hjelm, T. Vegge, K. Johansen, P. Norby, A. C. Luntz, ACS Appl. Mater. Interfaces 7, 4039 (2015)

[3] F. Martinez-Julian, A. Guerrero, M. Haro, J. Bisquert, D. Bresser, E. Paillard, S. Parrerini, G. Garcia-Belmonte J. Phys. Chem. C 118, 6069 (2014)

[4] Marta Haro, Nuria Vicente, Germà Garcia-Belmonte, Adv. Mater. Interfaces, DOI: 10.1002/admi.201500369 (2015)