SODIUM PYROPHOSPHATE CATHODE MATERIAL Na₂FeP₂O₇ FOR Na- AND Li-ION BATTERIES

Anna M. Tsapina^{a,b}, Arseny B. Slobodyuk^c, Sergei A. Petrov^b, Nina V. Kosova^b ^a Novosibirsk State University, 2 Pirogova, 630090 Novosibirsk, Russia ^b Institute of Solid State Chemistry and Mechanochemistry, 18 Kutateladze, 630128 Novosibirsk, Russia ^c Institute of Chemistry FEB RAS, 159 pr. Stoletiya Vladivostoka, 690022 Vladivostok,

Russia

E-mail: tsapina.a.m@gmail.com

Sodium-based insertion materials are interested for low-cost and large-scale Na- and Liion batteries. In 2012, Yamada *et al.* [1] proposed a new polyanion-based Na₂FeP₂O₇ cathode material. The Na₂FeP₂O₇ pyrophosphate has a theoretical capacity of 97 mAh/g, high operating voltage (3.0 V vs. Na/Na⁺), three-dimensional channels for Na⁺ diffusion and good thermal stability. Adopting a triclinic symmetry (S.G. *P*-1), the crystal structure of Na₂FeP₂O₇ consists of the corner-sharing FeO₆ octahedra and the bridging pyrophosphate groups P₂O₇, thereby creating large tunnels along [100], [-110] and [01-1] directions for facile and fast Na⁺ ion migration [1].

In the present study, we prepared Na₂FeP₂O₇/C by mechanochemically assisted solid state synthesis using FeC₂O₄·2H₂O, Li₂CO₃ and (NH₄)₂HPO₄ as reagents and 5 wt% of carbon as a coating agent. Mechanochemical activation was performed using a high-energy AGO-2 planetary mill. The activated mixture was subsequently heat treated at 600 °C in Ar flow. Crystal and local structure, particle size and electrochemical properties of the as-prepared Na₂FeP₂O₇ material were analyzed by XRD with Rietveld refinement using GSAS software package, SEM, EDX, Mössbauer, ²³Na and ³¹P MAS NMR spectroscopy, and galvanostatic cycling in Na⁺ and Na⁺/Li⁺ cells.

The refined lattice parameters (a = 6.4163(3) Å, b = 9.4077(4) Å, c = 10.9786(5) Å, $a = 64.468(2)^{\circ}$, $\beta = 85.693(3)^{\circ}$, $\gamma = 72.934(3)^{\circ}$, V = 570.63(5) Å³, $R_{wp} = 6.69$ %) well correlate to the literature data [2]. According to Mössbauer spectroscopy, a majority of Fe²⁺ ions are in a high-spin state. The sample contains about 20% of Fe³⁺ impurities, indicating the presence of a large amount of structural distortion. The ²³Na MAS NMR spectrum of the Na₂FeP₂O₇ is presented by two components at -14 and 175 ppm overlapped with satellites, contrary to a broad line in the spectrum of Li₂FeP₂O₇ [3]. ³¹P MAS NMR signal of Na₂FeP₂O₇ is located at ~0 ppm.

Galvanostatic cycling of Na₂FeP₂O₇ was performed in the 2.0–4.3 V range at C/20 rate and at room temperature starting with discharge. A sloping solid solution-like chargedischarge profile was observed. The discharge capacity was 87 mAh/g in Na-cell and 92 mAh/g in Li-cell. Electrochemical Na⁺/Li⁺ ion exchange was completed after the 4th cycle. Na⁺/Li⁺ non-oxidative chemical ion exchange was carried out in the solution of LiBr in acetonitrile for 24 h. According to EDX, only one Na⁺ can be readily replaced for one Li⁺ to produce the NaLiFeP₂O₇ composition with *P*-1 S.G.

^[1] P. Barpanda, T. Ye, S. Nishimura, S. Chung, Y. Yamada, M. Okubo, H. Zhou, A. Yamada, Electrochem. Commun. 24 (2012) 116.

^[2] T. Honma, A. Sato, N. Ito, T. Togashi, K. Shinozaki, T. Komatsu, J. Non-Cryst. Solids 404 (2014) 26.

^[3] N.V. Kosova, A.M. Tsapina, A.B. Slobodyuk, S.A. Petrov, Electrochim. Acta 174 (2015) 1278.