SIMULATED SYNTHESIS AND CHARACTERISATION OF Li-Mn-O NANOSTRUCTURES

R.S. Ledwaba^a, K. Kgatwane^a, T.X.T. Sayle^{a,b}, D.C. Sayle^b and P.E. Ngoepe^a

^a Materials Modelling Centre, University of Limpopo, Private Bag x1106, Sovenga, 0727, South Africa.

^b School of Physical Sciences, University of Kent, Canterbury, CT2 7NZ, United Kingdom.

Email of presenting author: phuti.ngoepe@ul.ac.za

Simulated amorphisation recrystallization methods, are now routinely used to generate models of various nano-architectures for metal oxides with complex microstructural details [1,2]. In the current studies the approach is used to generate nanostructures of manganese dioxides, and those associated with the Li₂MnO₃ and spinel LiMn₂O₄ for Li-ion battery application. Firstly, lithium transport and mechanical properties of pure and lithiated nanorods and nanoporous MnO_2 are discussed and compared with the bulk structure. In particular, stresses related to lithium insertion and how these impact on electrochemical properties are outlined. Secondly, a nanosphere of the ternary Li₂MnO₃ was synthesised and molecular dynamics (MD) simulations of its charging reveal that the reason nanocrystalline-Li₂MnO₃ is electrochemically active, in contrast to the parent bulk-Li₂MnO₃, is because in the nanomaterial the tunnels, in which the Li ions reside, are held apart by Mn ions, which act as a pseudo *point defect scaffold* Lastly, nano-architectures, i.e. nano- sphere, sheet, porous and bulk, associated with the Li-Mn-O ternary were synthesised from amorphous spinel nanosphere. The resulting crystallised nanostructures are characterised from visual images, radial distribution functions, XRDs and simulated microstructures. A preliminary analysis reveals the presence of the layered Li₂MnO₃ and spinel LiMn₂O₄ together with a wide variety of defects, including grain boundaries and ion vacancies.

References:

 T.X.T. Sayle, R.R. Maphanga, P. E. Ngoepe and D. C. Sayle, J. Am. Chem. Soc., **131** (2009), 6161-6173.
P.E.Ngoepe, R.R. Maphanga and D.C. Sayle, in: by C.R.A. Catlow, A. Sokol and A. Welsch (Eds.), Computational Approaches to Energy Materials, John Wiley and Sons Ltd., pp. 261-290.