TEMPERATURE-DRIVEN ORDER-DISORDER TRANSITIONS IN Na₃V₂(PO₄)₂F₃ AND Na₃V₂(PO₄)₃ POSITIVE ELECTRODES

<u>C. Masquelier</u>¹, M. Bianchini^{1,2,3}, F. Lalère¹, J.N. Chotard¹, R. David¹, O. Mentré⁴, G. Rousse⁵, V. Seznec¹, T. Broux^{1,2}, F. Fauth⁶, B. Fleutot¹, E. Suard³, L. Croguennec²

¹ LRCS, Université de Picardie Jules Verne, Amiens, France
² ICMCB Bordeaux, Pessac, France
³ Institut Laure Langevin, Grenoble, France
⁴ UCCS, Chimie du solide, ENSC Lille - UST Lille, France
⁵ FRE 3677, Chimie du Solide et Energie, Collège de France, Paris, France
⁶ CELLS-ALBA Synchrotron Facility, Barcelona, Spain.

Both $Na_3V_2(PO_4)_3$ and $Na_3V_2(PO_4)_2F_3$ compositions represent very attractive positive electrode materials for Na-based high power-density applications. Although being close in chemical formulas, their crystal structures have nothing in common, besides being phosphate-based frameworks within which Na^+ ions are distributed in a more or less ordered fashion. Given the critical impact of Na^+ distribution schemes on ion transport properties and on response to high charge-discharge currents, we undertook precise temperature-controlled structural studies

Until very recently the crystal structure of $Na_3V_2(PO_4)_2F_3$ was described in the tetragonal space group $P4_2/mnm$. We revealed, thanks to very high angular resolution synchrotron radiation diffraction, that a small orthorhombic distortion exists [1], described in the *Amam* space group: the structural framework is preserved but a different arrangement of the sodium ions was evidenced. Upon increasing slightly the temperature to ~130°C, Na⁺ are fully disordered and give rise to a more symmetrical structural form (space group I4/mmm).

The crystal structure of the NASICON Na₃V₂(PO₄)₃ phase (NVP) has been investigated as a function of T, combining laboratory and synchrotron X-ray powder diffraction as well as single crystal X-ray diffraction. The existence of four polymorphs from -30°C to 225°C was demonstrated. While the high temperature γ -NVP crystallizes in the classical rhombohedral cell (*R-3c*, 200°C), the low temperature α -NVP undergoes a monoclinic distortion (S.G. *C2/c*, -10°C) together with a complete ordering of the Na⁺ ions [2]. Additionally, partial substitution of Al for V results in a significant increase of the energy density of this electrode by activating the V⁴⁺/V⁵⁺ couple at 3.95 V vs. Na⁺/Na [3]. Na₃V₂(PO₄)₃ was used to build all solid state symmetrical cells operating at 200°C together with NASICON Na₃Zr₂Si₂PO₁₂ as the Na⁺ solid electrolyte. The battery operates at 1.8 V with 85 % of the theoretical capacity attained at C/10 with satisfactory capacity retention [4].

References

- [1] M. Bianchini et al., Chem. Mater., 26(14), 4238-4247 (2014)
- [2] J.N. Chotard et al., Chem Mater., 27(17), 5982-5987 (2015)
- [3] F. Lalère et al., J. Mater. Chem. A, 3, 16198-16205 (2015)
- [4] F. Lalère et al., J. Power Sources, 247(1), 975-980 (2014)