ORIGINS OF HCMRTM CATHODES DEGRADATION

V. Battaglia, G. Chen, W. Chen, G. Liu, D. Membreno, K. Persson, A. Shukla, L. Terborg, T. Yi and R. Kostecki

Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory I Cyclotron Road, Berkeley, CA 94720, USA r kostecki@lbl.gov

High capacity manganese rich (HCMRTM) materials are promising candidates for commercial Li-ion battery positive electrodes for applications in electric and plug-in hybrid electric vehicles.¹ These oxides, also denoted as xLiMO₂ - (1-x)LiMnO₃ (M = Co, Mn, Ni), deliver a high discharge capacity (>240 mAh/g) at operating voltages exceeding 3.5 V vs. Li/Li^{+.2} However, these materials have significant limitations and suffer from high first cycle irreversible capacity loss, impedance rise and voltage fade during cycling.²⁻⁴

This study provides an overview about possible scenarios which could lead to the DC resistance rise observed within a cycle and with cycle life in high capacity manganese rich positive electrode materials (HCMRTM). The structure and possible structural changes of the pristine and aged HCMRTM material are discussed. Preliminary evaluations of the material suggest a single phase, aperiodic crystal consisting of monoclinic domains. *In situ* Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and potentiostatic intermittent titration technique (PITT) are discussed providing information about structural changes of the surface, surface layer formation and Li⁺ diffusivity. Raman spectroscopy suggests transformation to a spinel like structure after aging and FTIR spectroscopy indicates dynamic formation of a surface film, growing with cycle number. The Li⁺ diffusivity in HCMRTM varies as a function of potential and correlates strongly with DC-R behavior. Changes in impedance as well as in cell parameters during and with cycling show morphology and topology changes of the HCMRTM material. The electrode composite and the material itself contribute to the long term impedance rise with prolonged cycling.

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231, under the Applied Battery Research for Transportation (ABR) Program and Award Number DE-EE0006443.

References

- 1.M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek and S. A. Hackney, *J Mater Chem*, **17**, 3112 (2007).
- 2.Y. Li, M. Bettge, B. Polzin, Y. Zhu, M. Balasubramanian and D. P. Abraham, J. *Electrochem. Soc.*, 160, A3006 (2013).
- 3.K. J. Carroll, D. Qian, C. Fell, S. Calvin, G. M. Veith, M. F. Chi, L. Baggetto and Y. S. Meng, *Phys Chem Chem Phys*, **15**, 11128 (2013).
- 4.D. Mohanty, A. S. Sefat, S. Kalnaus, J. L. Li, R. A. Meisner, E. A. Payzant, D. P. Abraham, D. L. Wood and C. Daniel, *J Mater Chem A*, 1, 6249 (2013).