Spray-drying synthesis of $\text{Na}_3\text{V}_2(\text{PO}_4)_2\text{F}_3$ as cathode material in hybrid-ion batteries

Nicolas Eshraghi, Sébastien Caes, Claude Karegeya, Caroline Piffet, Frédéric Boschini

LCIS/GREENMAT, Institute of Chemistry B6, Quartier Agora, University of Liège, 4000 Liège, Belgium

E-mail: neshraghi@ulg.ac.be

In recent years, fluorophosphates with the NASICON (Na Super-Ionic Conductor) type structure have been studied as cathode electrode materials. These fluorophosphates exhibit rich chemistry, attractive lithium/sodium insertion properties and thus offer promising electrochemical properties. Among them, $\text{Na}_3\text{V}_2(\text{PO}_4)_2\text{F}_3$ deserves attention because of promising electrochemical properties and ease of fabrication [1]. This material was reported by Song et al. in hybrid-ion batteries [2] and sodium ion batteries [1,3]. Here, $\text{Na}_3\text{V}_2(\text{PO}_4)_2\text{F}_3$/C powder was synthesized for the first time by the spray-drying method. $\text{Na}_3\text{V}_2(\text{PO}_4)_2\text{F}_3$/C contains 15% of carbon nanotubes (CNTs) added in situ to increase the electronic conductivity and connection between particles. In this method a solution/suspension is sprayed by air creating fine droplets in drying chamber with hot air flow (100–300 °C). These droplets are instantly dried, making it possible to harvest a homogeneous composition powder while avoiding thermal degradation of the compound (oxidation).

Structural and microstructural characterizations were carried out by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Study of firing and heat treatment influence on the powder purity and particle morphology showed that powders dried at 180 °C and fired at 600 °C have the best properties. Electrochemical measurements were carried out in hybrid-ion batteries, using a potentiostat (BT-LAB) in the range of 1.6–4.6 V and 2–4.6 V vs. Li$^+$/Li0 at different cycling rates. Addition of CNTs increased the conductivity and as a result the capacity. $\text{Na}_3\text{V}_2(\text{PO}_4)_2\text{F}_3$/C samples cycled between 1.6–4.6 V vs. Li$^+$/Li0 demonstrated specific capacities of 175 and 149 at C/15 and C/10-rate, respectively. These results are higher than the capacity of 147 mAh.g$^{-1}$ at 0.09C-rate reported by Song et al.[2]. Better cycling performance and capacity retention was observed when electrochemical cells were cycled between 2-4.6 V with capacities of 140, 128 and 102 mAh.g$^{-1}$ at C/15, C/10 and 1C-rate, respectively with 80% capacity retention over 300 cycles. These preliminary results show that the spray-drying technique is suitable for obtaining complex powders with a very good homogeneity leading to very good electrochemical properties.

References: