Conversion type materials have recently been considered as a plausible alternative to conventional electrode materials, owing to their strong gravimetric and volumetric energy densities. The ternary alloy TiSnSb was recently proposed as being a suitable negative electrode material in Li-ion batteries owing to its excellent electrochemical performance. Using complementary \textit{in situ operando} X-ray diffraction (XRD) and \textit{in situ operando} 119Sn Mössbauer spectroscopy, it was determined that during the first discharge, TiSnSb undergoes a conversion process leading to the simultaneous formation of Li-Sb and Li-Sn intermetallic compounds. However, some ambiguities remain: A shifted, group of resonances appear in the 7Li NMR spectra at approx. 20 ppm, in addition to a contribution from Li$_3$Sb at 3.5 ppm and a resonance at 8.5 ppm (assigned to Li$_2$Sn$_2$), and could correspond to intermediate phases. In addition, changes in the local environments of Sn and Li nuclei have been detected upon OCV relaxation after the lithiation process, using 119Sn Mössbauer and 7Li NMR spectroscopies, respectively. These results suggest an intrinsic instability of the phases formed at the end of the lithiation process. \textit{Ex situ} 7Li NMR indicates that this evolution is stopped or at least slowed down when the active material is in contact with the electrolyte. Both "\textit{in situ}" and "\textit{ex situ}" type experiments have been completed using the two techniques in order to understand the influence of small changes in composition on Mössbauer signal and 7Li NMR shifts. Following this approach, the ternary alloy NbSnSb was investigated and directly compared to TiSnSb to determine the influence of the inactive metal on the 7Li NMR shift. The obtained results highlight the sensitivity of 7Li NMR to the chemical or electronic environment around the Li$_3$Sb phase or clusters and not only to the direct local environment (Li$_3$Sb). This result shows the crucial importance of interfaces between the phases formed along the redox processes in the case of conversion materials. A systematic study using both Mössbauer spectroscopy and NMR the phases formed during discharge and subsequent relaxation will be presented and discussed.

References