NEW INSIGHTS INTO VANADIUM FLUOROPHOSPHATES OF FIRST INTEREST DEVELOPED FOR Li AND Na-ION BATTERIES

L. Croguennec^a, T. Broux^{a,b}, M. Bianchini^{a,b,c}, E. Boivin^{a,b}, L. Simonelli^d, F. Fauth^d, T. Bamine^a, M. Duttine^a, R.J. Messinger^e, E. Suard^c, E. Salager^e, M. Deschamps^e, D. Carlier^a, M. Ménétrier^a, and C. Masquelier^b

^a ICMCB-CNRS, Université de Bordeaux, Bordeaux INP, F-33608 Pessac cedex, France
^b LRCS, Université de Picardie Jules Verne, F-80039 Amiens Cedex 1, France
^c Institut Laue Langevin, F-38000 Grenoble, France
^d CELLS - ALBA Synchrotron, Cerdanyola del Vallès, E-08290 Barcelona, Spain
^e CEMHTI, Université døOrléans, F-45071 Orléans, France

Email address of the presenting author: Laurence.Croguennec@icmcb.cnrs.fr

 $LiVPO_4F$ and $Na_3V_2(PO_4)_2F_3$ are respectively positive electrode materials for Li-ion and Naion batteries, which are attracting strong interest due to their high capacity, rate capability and long-term cycling stability.^{1,2}

We will show how challenging is the control of oxygen over fluorine stoichiometry in these fluorophosphates. Existence of characteristic lithium defect environments has been for instance recently revealed using solid-state ⁷Li nuclear magnetic resonance in well-crystallized Tavorite LiVPO₄F,³ despite they were not seen by high resolution X-ray and neutron diffraction as well as scanning transmission electron microscopy. The nature of these defects will be discussed, considering different possible sources of aging of LiVPO₄F.

We already showed a complex phase diagram as a function of the charge state for $Na_3V_2(PO_4)_2F_3$, on the contrary to the straightforward solid solution described in the literature.⁴ From structural determination based on high resolution X-ray powder synchrotron data and bond valence sum analysis we proposed for instance in $NaV_2(PO_4)_2F_3$ two vanadium environments, V^{3+} and V^{5+} , instead of a single one (i.e. V^{4+}). We will report on the *operando* investigation of the redox processes involved during sodium deintercalation and on the charge compensation mechanism on the V site, considering X-ray absorption near edge structure measurements collected at the V k-edge.

Acknowledgements:

This research is performed in the frame of the French network RS2E (http://www.energiers2e.com) and of the European network ALISTORE-ERI (http://www.alistore.eu). This project is partly funded by the French National Research Agency ANR (Descartes project SODIUM and Progelec project HIPOLITE) and by the H2020 European Program (Project NAIADES).

References:

- [1] Huang et al. J. Power Sources 189, 748-751 (2009)
- [2] Ponrouch et al. Energy & Environmental Science 6(8), 2361-2369 (2013)
- [3] Messinger et al. Chem. Mater. 27(15) (2015)
- [4] Bianchini et al. Chem. Mater. 27(8), 3009 (2015)