Facile Synthesis of Pd₃Co Bimetallic Hollow Nanospheres and Their Application for Rechargeable Li-O₂ Batteries.

Sung Man Cho, Jee Ho Yom, Sun Woo Hwang, Woo Young Yoon* Department of Materials Science and Engineering, Korea University, 1, 5Ga, Anam-dong,

Sungbuk-Gu, Seoul, 136-701, Republic of Korea

email address of the presenting author: cho104401@korea.ac.kr

Lithium-oxygen (Li-O₂) batteries have attracted much attention due to their high theoretical specific energy and energy density compared to conventional lithium ion batteries, and are one of the most promising high-energy-storage systems for electric vehicles (EVs) and hybrid electric vehicles (HEVs). The theoretical specific energy and energy density of a Li-O₂ battery with the discharge reaction $[2Li + O_2 \rightarrow Li_2O_2]$ are 3505 Wh kg⁻¹ and 3436 Wh l⁻¹, respectively. However, their poor round-trip efficiency and low cycle life have limited their commercialization. The poor round-trip efficiency is the result of the sluggish reaction kinetics during cycling, which gives rise to a high overpotential. The carbon electrode also reacts with the discharge products (Li₂O₂) and promotes electrolyte decomposition during cycling in the Li–O₂ cell, which produces the side reaction products such as lithium carbonate (Li₂CO₃), lithium formate monohydrate (HCO₂Li), and lithium acetate (CH₃CO₂Li). This eventually leads to a much shorter cycle life than would be expected. Therefore, making the design of a carbon-free cathode with high catalytic catalysts and suitable pore structure is the key to enhance the performance of Li-O₂ batteries. In this work, for the first time, Pd₃Co bimetallic hollow nanospheres was investigated as a carbon-free cathode materials in Li-O₂ batteries. Pd₃Co hollow spheres were synthesized by simple polyol method and used for cathode materials. The resulting Li-O₂ cell demonstrated high energy efficiency and improved cycling stability, which were attributed to the high catalytic activity and pore structure of Pd₃Co hollow spheres.

Reference to a journal publication:

[1] P.G. Bruce, S.A. Freunberger, L.J. Hardwick, J.-M. Tarascon, Nat. Mater., 11 (2012) 19-29.

[2] B.M. Gallant, R.R. Mitchell, D.G. Kwabi, J. Zhou, L. Zuin, C.V. Thompson, Y. Shao-Horn, 116, J. Phys. Chem. C (2012) 20800-20805.